
OBJECT-ORIENTED APPROACH TO SIMULATION
OF CHEMICAL REACTION KINETICS

A. N. Migun, E. A. Matveichik,
A. P. Chernukho, and S. A. Zhdanok

UDC 53.072.001.57

The structure and main elements of realization of a library of classes for simulation of the kinetics of chemi-
cal reactions are considered. Due to a modern approach used in the development of the library, it is charac-
terized by high universality and adaptability and provides a high rate of calculations.

Introduction. As a result of the rapid development of computers in the last few decades, numerical simulation
has become a powerful investigation tool that logically supplements experimental investigations. Moreover, modern ex-
perimental investigations cannot be carried out without recourse to a complex computational hardware provided with a
corresponding software. In some cases, simulation is the only possible method of obtaining some insight into the de-
tails of a process. This gave birth to an industry involved in the development and adoption of various investigation
program products. The computational programs proposed in the current software market can be conditionally divided
into application programs and special subprograms. An application program represents one or several completed mathe-
matical models having a user interface. Such a program begins to operate once the initial data are introduced into it.
Application programs are developed for simulation of concrete apparatus and processes. Examples of application pro-
grams are the FLUENT [1], StarCD [2], and CHEMKIN [3] programs. Libraries of special subprograms also represent
logically completed mathematical models; however, they, unlike the application programs, are developed for special
calculations and have only a program interface for making a call from the user programs. Examples of libraries of spe-
cial subprograms are the NAG [4] and Numerical Recipes [5] programs, as the well as old versions of the CHEMKIN
programs.

In the majority of cases, scientific-research programs and libraries of subprograms are written in various ver-
sions of the programming language Fortran. However, Fortran is a linear language and thus is limited in application,
e.g., it gives no way of constructing complex programs on the basis of modern approaches. Moreover, commercial
software, as a rule, represents "a black box" for the user, into which he cannot introduce any additions or improve-
ments.

Until recently, the main goal of programmers was to increase the rate of calculations. However, the appear-
ance of high-speed computers somewhat diminished the calculation-rate priority and heightened the role of the univer-
sality of calculations. Therefore, recently most of the attention has been concentrated on the structure and functions of
computational programs and their serviceability.

It is known that object-oriented programming is one of the most powerful tools for obtaining a universal soft-
ware that could be easily widened and optimized. In the present work, we propose a new library of classes for simu-
lation of the kinetics of chemical reactions in various thermophysical processes, e.g., in a flame propagating in a free
space or in a porous batch, in a gas discharge in chemically reacting systems, etc. The object-oriented library of pro-
grams developed by us with the use of modern methods is highly universal and provides a high rate of calculation. It
is remarkable that the universality and adaptability of this library were attained, without sacrifice of the calculation
rate, only due to the use of an original algorithm, providing reciprocity between the library units, and a thoroughly
developed user interface.

The library of classes proposed can be used in user-developed programs since it has a simple, intelligible in-
terface and allows one to easily organize the calculation of the thermodynamic properties of chemical substances and
simulation of the chemical kinetics of reactions in the gas phase.

Journal of Engineering Physics and Thermophysics, Vol. 78, No. 1, 2005

A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str.,
Minsk, 220072, Belarus; email: migoun@itmo.by. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 1, pp.
153–158, January–February, 2005. Original article submitted September 23, 2004.

1062-0125/05/7801-0160  2005 Springer Science+Business Media, Inc.160

The library considered is written in the programming language C++.
Basic Principles. The library of classes developed is characterized first of all by a high universality and a

high rate of calculations. The high calculation rate is attained due to the division of the library into a large number of
functionally complete and optimized units. The universality of this library is provided by a special algorithm that will
be described below.

Figure 1 shows the structure of the library of classes developed. Unit 1 contains data on chemical elements
and functions providing effective use of these data. Unit 2 is responsible for the creation of objects for calculating the
thermodynamic properties of chemical elements. The objects created in unit 2 are stored in unit 3 together with a set
of functions for effective work with the database on chemical elements. Unit 4 is responsible for the creation of ob-
jects for calculating the transport properties of substances. The objects used for calculating the properties of elementary
chemical reactions are controlled by unit 5. Unit 6 is a store for objects created in unit 5. Units 2, 4, and 5 are di-
vided into several subunits that provide an adaptibility of the system and a deep optimization of calculations in each
concrete case.

New Technical Solutions. As was mentioned above, the universality and adaptibility of the library considered
is attained due to the use of a special algorithm that allows one to create objects depending on the type of input data
flow. This algorithm comprises a virtual designer of objects and has the following form:

1) display of all types of objects;
2) analysis of the input data flow for each type of object with recovery of the weight factor;
3) selection of the object with the largest weight factor;
4) creation of a concrete object and its initialization with the use of data taken from the initial data flow;
5) repetition of operations 2–4 until the input data flow ends.
The core of the algorithm developed is the &)DFWRU\ class, which provides the creation of objects from the

input data flow. The interface of this class is as follows:
Class CFactory 




public
vir tual DCFactory () ;
s tat ic tool Register (LPESTIMATE est imate, LPCREATE create, LPID id);

protected:
CFactory () 






 ;

s tat ic CFactory ∗ Create (is tream& in, in t& nError, ostream ∗ pLog);


 ;
Each type of data or, in other words, the input data format, is determined by three obligatory service func-

tions having the following designators:
typedef int (∗ LPESTIMATE) (istream& in, ostream ∗ pLog);
typedef CFactory ∗ (∗ LPCREATE) (istream& in, UINT& nError, ostream ∗ pLog);
typedef const str ing& (∗ LPID) ();

Fig. 1. Structure of the library of classes.

161

LPESTIMATE designates the function that analyzes the input data flow from the current position and re-
covers the weight factors representing the probability of the presence of a definite type of data in the input data flow
analyzed. As a rule, the weight factor points to a number of features identifying a concrete format. After the data flow
has been analyzed, the function recovers its state. /3&5($7(designates the function that creates objects of a definite
type with the use of data from the initial data flow. The third parameter designates the function recovering the text
name of the format considered. This parameter was introduced to provide detailed recording of the process of analysis
and creation of objects, which makes the search for errors in the input data format easier.

Note that the CFactory class has a protected designer and cannot be used directly.
We will consider the operating of the algorithm proposed with the example of calculating the thermodynamic

properties of chemical elements.
In practically all of the popular databases on the thermodynamic properties of chemical elements, the data are

presented in the formatted-text form [3, 6, 7]. Thus, it is necessary to develop a method of calculation of the thermo-
dynamic properties of elements that would allow the end user to do away with the details of each of the data formats,
i.e., to develop a unique, universal program interface independent of the data format used. The CFactory class devel-
oped by us is suitable for this purpose. From this class we may directly determine the class describing the general in-
terface for functionally similar objects, differently formatted chemical elements in our case. For determining the
properties of chemical substances, we have developed the purely virtual class &6SHFLH with the interface

class CSpecie: public CFactory 



public:
stat ic CSpecie ∗ (is tream& in, nError, ostream ∗ pLog);
vir tuel DCSpecie () 






;

vir tual string Name () const = 0;
vir tual double Charge () const = 0;
vir tual double Weight () const = 0;
vir tual int Phase () const = 0;
vir tual double Entropy (double dT) const = 0;
vir tual double Enthalpy (double dT) const = 0;
vir tual double HeatCapacity (double dT) const = 0;

protected:
CSpecie () 






;

CSpecie (const CSpecie&);


 ;

The &6SHFLH class also cannot be used for direct instantiation and serves only for prescription of a unified
interface for all objects featuring the properties of chemical elements.

The functions providing the use of each type of data are concretized in classes following directly from the
CSpecie class. Below, we present, as examples, interfaces of classes working with the CHEMKIN format [3]:

class CChemkinSpecieLite: public CSpecie




public:
vir tual DCChemkinSpecieLite () 






;

s tat ic int Est imate (is tream& in, ostream ∗ pLog);
stat ic CSpecie ∗ Create (is t ream& in, UINT&, nError , ostream ∗ pLog);
stat ic const s tr ing& ID () 


 return m_strID; 


 ;

vir tual str ing Name () 

 return m_strName; 


 ;

vir tual str ing Formula () const ;
vir tual str ing Comment () 


 return m_strComment; 


 ;

vir tual double Charge () 

 return m_nCharge; 


 ;

vir tual double Weight () 

 return m_dWeight; 


 ;

vir tual int Phase () const 

 return m_nPhase; 


 ;

vir tual double Entropy (double dT) const ;

162

vir tual double Enthalpy (double dT) const ;
vir tual double HeatCapacity (double dT) const ;

protected:
CChemkinSpecieLite () 






;

CChemkinSpecieLite (const CChemkinSpecieLite&);


 ;

class CChemkinSpecieLite: public CChemkinSpecieLite




public:
vir tual DCChemkinSpecieLite () 






;

s tat ic int Est imate (is tream& in, ostream ∗ pLog);
stat ic CSpecie ∗ Create (is t ream& in, UINT& nError, ostream ∗ pLog);
stat ic const s tr ing& ID () 


 return m_strID; 


 ;

vir tual double Entropy (double dT) const ;
vir tual double Enthalpy (double dT) const ;
vir tual double HeatCapacity (double dT) const ;

protected:
CChemkinSpecieLite () 






;

CChemkinSpecieLite (const CChemkinSpecieLite&);


 ;

The main difference between these two classes is that the first of them works with single-interval approxima-
tion of thermodynamic properties, and the second class continues the treatment of the first interval and, additionally,
treats the second interval.

It is evident that each class contains three static service functions. Before use, each class representing a con-
crete data format should be registered by calling the function 5HJLVWHU, for example:

CFactory: Register (CChemkinSpecie: : Est imate, CChemkinSpecie: :
Create, CChemkinSpecie: : ID);

In this case, the designators of service functions for each type of data are retained in the internal structures of the li-
brary and are used in the algorithm for identifying objects in the input data flow. All the classes introduced are auto-
matically registered when the user program starts.

The &6SHFLH class overdetermines the virtual designer &)DFWRU\� &UHDWH, which makes the interface
more convenient, and the G\QDPLFBFDVW operator of the function exercises dynamic control over the types of data
in the process of operation, which provides safety of the code and makes it more reliable.

We will consider the operation of the above-described algorithm with the example of a simple user program
(some rows of the code are omitted for simplicity):

i l fstream stream (input .dat);
vector <CSpecie ∗ > species;
while (stream.good ()) 




i f (CSpecie ∗ pSpecie = CSpecie: : Create (stream, nError))
species.push_back (pSpecie) ;
else break;




for (i = 0; i <species.size () ; i++) 



cout (<<"H298 ("<<species [1] → Name () << ") = " ;
cout <<species [1] → Enthalpy (298) << endl ;




Let us assume that the LQSXW�GDW text file contains data on the properties of chemical elements in various
formats involved in the library developed. In the first cycle of the program, the virtual designer &6SHFLH��&UHDWH
is called. This designer creates objects featuring the properties of elements. If an object is created successfully, its des-
ignator is put into the species file. The cycle is terminated if an object is created with an error or when the file ends.

163

In the second cycle, the name of an element and its dimensionless enthalpy at 298 K are introduced into the standard
data flow. It is evident that, due to the unified interface, all the elements are processed by one and the same method.
In this case, the virtual calculations realized in different data formats are unnoticed by a user. Moreover, when a user
calls the data on the properties of any element, he will obtain a function that is optimized for the work with the data
to which these properties are assigned in the input file, which provides a high rate of calculations.

We will show how the algorithm proposed can be used for calculating the rate constants of a reaction. It is
known that the rate constants of reactions are most frequencly determined through the coefficients of the modified Ar-
rhenius relation used in four forms presented in Table 1, where k is the rate constant, A is a preexponent, T is tem-
perature, β is an exponent, Ea, is the activation energy, and R is the universal gas constant.

It is seen that the calculation of the rate constants of reactions can be reduced to the simple assignment of
values or be as large as four multiplications and two raisings to a power. At the same time, simple statistical analysis
of the kinetic mechanisms (see Table 1) shows that the number of reactions occurring with a constant rate is equal to
a third of the total number of reactions occurring by a certain mechanism, and the reactions defined by the complete
Arrhenius relation account for 28% of all the reactions. It is evident that there is no need for calculating the rate con-
stants by the complete Arrhenius formula if one or two coefficients are equal to zero. This problem can be solved
with the use of conditional operators. However, the universality and adaptability of the library decrease in this case
because of the necessity of recomplicating the whole project on introduction of changes. Moreover, this approach is in
contradiction with the object-oriented principles of programming. In the library developed, this problem is solved with
the use of a virtual designer and virtual functions. The virtual designer creates various reaction objects that strictly cor-
respond to each concrete input data block, and the virtual functions used for calculating the rate constants and other
properties of reactions unify the interface and, in doing so, make the details of calculations unnoticed for a user. This
was demonstrated above by the example of calculating the thermodynamic properties of chemical elements.

The library proposed can be widened if necessary for other data formats. To do this, it will suffice to create
a class directly from the C F ac t o r y class or its derivatives, to provide this class with the above-described service
functions, and to register it prior to the first use of the file functions. It is remarkable that this procedure does not call
for the recompilation of the whole library, which is very important for large program systems whose compilation and
assembly can take several hours.

Despite the fact that the whole library is written in the C++ programming language, it can also be used in
programs written in other programming languages. However, in this case, the need for a special program interface that
would provide a connection between the object-oriented and linear parts of the program may arise.

CONCLUSION

A modern approach to the development of scientific-research computational programs has been demonstrated
with the example of development of a library of classes for simulation of the kinetics of chemical reactions. The de-
velopment of the library was begun several years ago and is being continued at the Section of Nonequilibrium Proc-
esses of the A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus. At
present, the seventh version of the library has been developed. This version allows one to calculate the thermodynamic
properties of chemical elements, using three main data formats, and the kinetics of several types of elementary chemi-
cal reactions.

TABLE 1. Methods of Prescription of the Rate Constants of Reactions

Form of relation Volume of calculations Average number of reactions, %

k = A Simple assignment 33

k = ATβ One multiplication and one exponentiation 6

k = A exp



—

Ea

RT




Three multiplications and one exponentiation 33

k = ATβ exp



—

Ea

RT




Four multiplications and two exponentiations 28

164

Since the library of classes proposed can be widely used, we invite all persons who are interested in it or in
its further development to discuss any problems concerning this library by e-mail: migoun@itmo.by.

The above-described library of classes was used for the development of a program for determining the ther-
modynamic properties of chemical substances. A demonstration version of the program as well as additional and con-
tact information can be obtained from the Internet [8].

REFERENCES

1. FLUENT Inc. CFD Flow Modeling Software. http://www.fluent.com.
2. StarCD Software. http:// www.cd-adapco.com/products/starsolver.htm.
3. R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis

of Gas-Phase Chemical Kinetics, Sandia Report SAND89-80090, UC-401, Livermore, September 1989.
4. Numerical Algorithms Group. http://www.nag.co.uk.
5. Numerical Recipes. http://www.nr.com.
6. NIST Chemistry Webbook. http:// webbook.nist.gov/chemistry.
7. B. J. McBride and G. Sanford, Computer Program for Calculation of Complex Chemical Equilibrium Composi-

tions and Applications: II. Users Manual and Program Description, NASA Reference Publication 1311, June
1996.

8. Department of Nonequilibrium Processes. http:// www.dnp.itmo.by/projects/ckcl.html.

165

